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Abstract

In this paper, a new type of composite piezoelectric ceramic transducers is studied. The transducer consists of a

piezoelectric ceramic thin ring polarized in the thickness direction and a metal thin circular ring. The radial vibration of the

transducer is analyzed and its radial electro-mechanical equivalent circuit is obtained. Based on the electro-mechanical

equivalent circuit, the resonance and anti-resonance frequency equations are obtained. The relationship between the

resonance frequency, the anti-resonance frequency, and the effective electro-mechanical coupling coefficient and

the geometrical dimensions is analyzed. Some radial composite piezoelectric transducers are designed and manufactured.

The resonance frequencies and anti-resonance frequencies are measured and the effective electro-mechanical coupling

coefficient is calculated. It is illustrated that the measured radial resonance frequencies are in good agreement with the

theoretical results from the resonance frequency equation. The finite element method is also used to find the resonance

frequency and the radial displacement distribution. It is shown that the resonance and anti-resonance frequencies from the

finite element method are also in good agreement with those from the analytical method in this paper.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Piezoelectric ceramic transducers are widely used for emitting and receiving sound waves in the medium.
There are many kinds of piezoelectric transducers that can be excited to vibrate in different vibrational modes
for different practical applications. Generally speaking, the most widely used vibrational modes in ultrasonic
technology are longitudinal extensional vibrational mode, radial extensional vibrational mode, torsional
vibrational mode, and flexural vibrational mode [1–7]. For underwater sound and ultrasonic applications,
longitudinal composite piezoelectric transducers, which are composed of a stack of piezoelectric ceramic rings
sandwiched between two metal masses are widely used and they are also referred to as sandwich transducers or
Langevin composite transducers. This kind of composite transducers are mainly excited to vibrate in one-
dimensional longitudinal vibrational mode and the design theory has been well developed [8–14]. The
advantages of the longitudinal composite piezoelectric transducers include large power capacity, high
mechanical strength, low resonance frequency, and stable vibrational performances. However, the radiating
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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area of a longitudinal composite piezoelectric transducer is limited to less than a quarter wavelength because
one-dimensional design theory is assumed and this requires that the lateral geometrical dimension of a
longitudinal composite transducer must be much less than its longitudinal dimension.

In order to increase the radiating area of the longitudinal composite piezoelectric transducer, piezoelectric
ceramic ring or tube transducers in radial vibration can be used. For the radial transducers, the sound
radiation is in X–Y plane and is two-dimensional, and the radiation area is increased compared with one-
dimensional longitudinal composite transducer. However, for simple radial piezoelectric ceramic transducers,
which are either a piezoelectric ceramic ring or a tube, its power capacity is limited because of the fact that the
mechanical strength of pure piezoelectric materials is low. To overcome this problem, the radial composite
piezoelectric transducer is proposed in this paper which is similar to the longitudinal composite sandwich
transducer in structure. The radial composite piezoelectric transducer is composed of a piezoelectric ceramic
ring or tube and an outer metal ring or tube. It can be used as a two-dimensional high power radiator in
ultrasonic technology and underwater sound. It is also expected that this kind of radial composite transducers
can also be used as radial actuators and sensors in some related fields.

On the other hand, in underwater acoustics and some other fields, some new flextensional vibrational mode
transducers named as moonie and cymbal transducers are developed [15–19]. They have the advantages of
small volume and large vibrational displacement amplitude. In moonie or cymbal transducers, a piezoelectric
ceramic thin disk polarized in its thickness direction in radial vibration is sandwiched between two metal caps
which can take different shapes. The radial vibration of the piezoelectric disk is converted into the flexural
vibration of the metal caps, and the metal caps in flexural vibration radiate sound wave into the surrounding
medium, such as water or air. In the traditional moonie or cymbal transducers, the piezoelectric ceramic disk
and the metal caps are glued together by some kind of cement. Since the cementing strength is limited, the
traditional moonie or cymbal transducers cannot be excited to vibrate at a very large power level. In order to
increase the power capacity of the moonie or cymbal transducers, the radial composite piezoelectric transducer
can be used instead of a piezoelectric ceramic disk. In this case, the metal caps and the radial composite
piezoelectric transducer can be connected together by using metal bolts, the mechanical strength is increased,
and therefore the power capacity of the moonie or cymbal can be increased accordingly.

As stated above, the radial composite piezoelectric transducers can be used in ultrasonic technology,
underwater sound and mechanical actuating and sensing fields. However, for the radial composite
piezoelectric transducer, there is no developed design theory. In this paper, the radial composite piezoelectric
transducer consisting of a piezoelectric ceramic thin ring and a metal thin circular ring is studied, its electro-
mechanical equivalent circuit is obtained, the resonance frequency equation is derived, and its vibrational
characteristics are analyzed.

2. Analysis on the radial vibration of a composite piezoelectric transducer

The radial composite piezoelectric transducer is shown in Fig. 1. In the figure, the external exciting electric
field E3 is in the thickness direction. The inner and outer radiuses of the piezoelectric ceramic ring are R1 and
R2; the inner and outer radiuses of the metal thin ring are R2 and R3. The thickness of the composite
transducer is h.
Fig. 1. Geometrical diagram of a radial composite piezoelectric transducer in radial vibration.



ARTICLE IN PRESS
S. Lin / Journal of Sound and Vibration 306 (2007) 192–202194
2.1. Radial vibration of a piezoelectric ceramic thin ring

Fig. 2 shows a thickness polarized piezoelectric ceramic ring in plane radial vibration. Its thickness, inner
and outer radiuses are h, R1, and R2. Fr1, vr1 and Fr2, vr2 are the radial force and vibration velocity at the inner
and outer surfaces of the piezoelectric ring. When the thickness is much less than the outer radius, the
piezoelectric ceramic ring can be regarded as an ideal thin one and its vibration an ideal plane radial vibration.
The radial wave equation is

r0
q2xr

qt2
¼

qTr

qr
þ

Tr � Ty

r
. (1)

Here, r0 is the volume density of the piezoelectric ceramic material, r the radial coordinate, xr ¼ xrðr; tÞ the
radial displacement, and Tr and Ty the radial and tangential stresses. The radial and tangential strains Sr and
Sy can be expressed as

Sr ¼
qxr

qr
; Sy ¼

xr

r
. (2)

The piezoelectric constitutive equations are:

Sr ¼ sE
11Tr þ sE

12Ty þ d31E3, (3)

Sy ¼ sE
12Tr þ sE

11Ty þ d31E3, (4)

D3 ¼ d31Tr þ d31Ty þ �
T
33E3. (5)

In the above equations, sE
11 and sE

12 are the elastic compliance constants measured at constant electric field,
d31 the piezoelectric strain constant, E3 the external exciting electric field, D3 the electric displacement, and �T

33

the dielectric constant measured at constant stress. Let xr ¼ xr0ðrÞ expðjotÞ, using the above equations, the
wave equation can be expressed as

d2xr0=dr2 þ ðdxr0=drÞ=r� xr0=r2 þ k2
r0xr0 ¼ 0. (6)

Here, kr0 ¼ o=V r0, o ¼ 2pf , V r0 ¼ ½1=sE
11r0ð1� n212Þ�

1=2, Vr0 is the radial sound speed, and n12 ¼ �sE
12=sE

11.
The solution to Eq. (6) is

xr0ðrÞ ¼ A0J1ðkr0rÞ þ B0Y 1ðkr0rÞ. (7)

Here, J1ðkr0rÞ and Y 1ðkr0rÞ are Bessel functions of order one, A0 and B0 are constants. The radial
vibrational velocity amplitude vr0 can be obtained as

vr0 ¼ jo½A0J1ðkr0rÞ þ B0Y 1ðkr0rÞ�. (8)
Fig. 2. A thickness polarized piezoelectric ceramic ring in radial vibration.
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From Fig. 2, using the boundary conditions, vr0jr¼R1
¼ vr1, vr0jr¼R2

¼ �vr2, we can get the expressions for
the constants:

A0 ¼ �
1

jo
vr2Y 1ðkr0R1Þ þ vr1Y 1ðkr0R2Þ

J1ðkr0R2ÞY 1ðkr0R1Þ � J1ðkr0R1ÞY 1ðkr0R2Þ
, (9)

B0 ¼
1

jo
vr2J1ðkr0R1Þ þ vr1J1ðkr0R2Þ

J1ðkr0R2ÞY 1ðkr0R1Þ � J1ðkr0R1ÞY 1ðkr0R2Þ
. (10)

From Eqs. (3) and (4), the radial stress Tr in the piezoelectric ring can be expressed as

Tr ¼
Sr � Sy

sE
11 � sE

12

þ
Sr þ Sy � 2d31E3

sE
11 þ sE

12

� �
=2 ¼

1

sE
11

Sr þ n12Sy

1� n212
�

d31E3

1� n12

� �
. (11)

Substituting Eqs. (2) and (7) into (11) yields

Tr ¼ vr2
J1ðkr0R1Þ½kr0Y 0ðkr0rÞ � Y 1ðkr0rÞð1� n12Þ=r� � Y 1ðkr0R1Þ½kr0J0ðkr0rÞ � J1ðkr0rÞð1� n12Þ=r�

jo½J1ðkr0R2ÞY 1ðkr0R1Þ � J1ðkr0R1ÞY 1ðkr0R2Þ�s
E
11ð1� n212Þ

þ vr1
J1ðkr0R2Þ½kr0Y 0ðkr0rÞ � Y 1ðkr0rÞð1� n12Þ=r� � Y 1ðkr0R2Þ½kr0J0ðkr0rÞ � J1ðkr0rÞð1� n12Þ=r�

jo½J1ðkr0R2ÞY 1ðkr0R1Þ � J1ðkr0R1ÞY 1ðkr0R2Þ�s
E
11ð1� n212Þ

�
d31E3

sE
11 þ sE

12

. ð12Þ

From Fig. 2, we have, F r1 ¼ �Trjr¼R1
S1, Fr2 ¼ �Trjr¼R2

S2, S1 ¼ 2pR1h, S2 ¼ 2pR2h. S1 and S2 are the
inner and outer surface areas of the piezoelectric ceramic thin ring. Using Eq. (12) and the boundary
conditions of radial forces, after some complex transformations, we have

F 00r1 ¼ ðZ1p þ Z3pÞv
0
r1 þ Z3pv0r2 þN31V 3, (13)

F 00r2 ¼ ðZ2p þ Z3pÞv
0
r2 þ Z3pv0r1 þN31V 3. (14)

Here, F 00r1 ¼ ðpkr0R2=2ÞF r1, F 00r2 ¼ ðpkr0R1=2ÞF r2, v0r1 ¼ ð2=pkr0R2Þvr1,v
0
r2 ¼ ð2=pkr0R1Þvr2; N31 ¼ p2kr0R1R2

ðd31=ðsE
11 þ sE

12ÞÞ, N31 is the electro-mechanical conversion coefficient of a thin piezoelectric ceramic ring in
radial vibration. V3 ¼ E3h, V3 is the voltage applied to the piezoelectric ring. Z1p, Z2p, Z3p are three
mechanical impedances, their expressions are:

Z1p ¼
p2ðkr0R2Þ

2Z01

4j

Y 1ðkr0R2ÞJ0ðkr0R1Þ � J1ðkr0R2ÞY 0ðkr0R1Þ

J1ðkr0R2ÞY 1ðkr0R1Þ � J1ðkr0R1ÞY 1ðkr0R2Þ
þ

1� n12
kr0R1

� �

� j
Z01

2

pkr0R2

J1ðkr0R2ÞY 1ðkr0R1Þ � J1ðkr0R1ÞY 1ðkr0R2Þ
, ð15Þ

Z2p ¼
p2ðkr0R1Þ

2Z02

4j

Y 1ðkr0R1ÞJ0ðkr0R2Þ � J1ðkr0R1ÞY 0ðkr0R2Þ

J1ðkr0R2ÞY 1ðkr0R1Þ � J1ðkr0R1ÞY 1ðkr0R2Þ
�

1� n12
kr0R2

� �

� j
Z02

2

pkr0R1

J1ðkr0R2ÞY 1ðkr0R1Þ � J1ðkr0R1ÞY 1ðkr0R2Þ
, ð16Þ

Z3p ¼ j
Z01

2

pkr0R2

J1ðkr0R2ÞY 1ðkr0R1Þ � J1ðkr0R1ÞY 1ðkr0R2Þ

¼ j
Z02

2

pkr0R1

J1ðkr0R2ÞY 1ðkr0R1Þ � J1ðkr0R1ÞY 1ðkr0R2Þ
. ð17Þ
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Here, Z01 ¼ r0Vr0S1, Z02 ¼ r0V r0S2. Let the electric current into the piezoelectric ceramic ring be I3, For
harmonic vibration, I3 ¼ dQ=dt ¼ joQ, Q is the electrical charge. It can be calculated from the following
formula:

Q ¼ 2p
Z

D3rdr. (18)

Substituting Eq. (5) into Eq. (18), after some transformations, we can get the following equation:

I3 ¼ joC0rV3 �N31ðv
0
r1 þ v0r2Þ. (19)

Here, C0r ¼ ð�T
33S=hÞ½1� 2d2

31=ð�
T
33ðs

E
11 þ sE

12ÞÞ�, C0r is the clamped electric capacitance of the piezoelectric
ceramic thin ring in radial vibration. S ¼ pðR2

2 � R2
1Þ, S is the cross-sectional area of the piezoelectric ceramic

circular ring. Using Eqs. (13), (14) and (19), the Mason electro-mechanical equivalent circuit of a piezoelectric
ceramic thin circular ring in radial vibration can be obtained as shown in Fig. 3. In the figure, F 00r1 ¼ n1Fr1,
F 00r2 ¼ n2Fr2, v0r1 ¼ vr1=n1, v0r2 ¼ vr2=n2, n1 ¼ pkr0R2=2, n2 ¼ pkr0R1=2.
2.2. Plane radial vibration of a metal thin circular ring

Fig. 4 shows a metal thin circular ring in radial vibration. Its thickness, inner and outer radiuses are h, R2,
and R3. Fr2, vr2 and Fr3, vr3 are the radial force and vibration velocity at the inner and outer surfaces of the
metal ring. According to this similar type of analysis, the electro-mechanical equivalent circuit of a metal thin
circular ring in radial vibration can be obtained as shown in Fig. 5. In Fig. 5, Z1m, Z2m, and Z3m are the three
mechanical impedances, their expressions are:

Z1m ¼ j
2Zr2

pkR2½J1ðkR3ÞY 1ðkR2Þ � J1ðkR2ÞY 1ðkR3Þ�

�
J1ðkR3ÞY 0ðkR2Þ � J0ðkR2ÞY 1ðkR3Þ � J1ðkR2ÞY 0ðkR2Þ þ J0ðkR2ÞY 1ðkR2Þ

J1ðkR2ÞY 0ðkR2Þ � J0ðkR2ÞY 1ðkR2Þ

� �

� j
2Zr2ð1� nÞ

pðkR2Þ
2
½J1ðkR2ÞY 0ðkR2Þ � J0ðkR2ÞY 1ðkR2Þ�

, ð20Þ

Z2m ¼ j
2Zr2

pkR2½J1ðkR3ÞY 1ðkR2Þ � J1ðkR2ÞY 1ðkR3Þ�

�
J1ðkR2ÞY 0ðkR3Þ � J0ðkR3ÞY 1ðkR2Þ � J1ðkR3ÞY 0ðkR3Þ þ J0ðkR3ÞY 1ðkR3Þ

J1ðkR3ÞY 0ðkR3Þ � J0ðkR3ÞY 1ðkR3Þ

� �

þ j
2Zr3ð1� nÞ

pðkR3Þ
2
½J1ðkR3ÞY 0ðkR3Þ � J0ðkR3ÞY 1ðkR3Þ�

, ð21Þ
Fig. 3. Electro-mechanical equivalent circuit of a thickness polarized piezoelectric ceramic thin ring in radial vibration.



ARTICLE IN PRESS

Fig. 4. A thin metal circular ring in radial vibration.

Fig. 5. Electro-mechanical equivalent circuit of a metal thin circular ring in radial vibration.
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Z3m ¼ j
2Zr2

pkR2½J1ðkR3ÞY 1ðkR2Þ � J1ðkR2ÞY 1ðkR3Þ�

¼ j
2Zr3

pkR3½J1ðkR3ÞY 1ðkR2Þ � J1ðkR2ÞY 1ðkR3Þ�
. ð22Þ

Here, Zr2 ¼ rV rS2, Zr3 ¼ rV rS3, S2 ¼ 2pR2h, S3 ¼ 2pR3h, and S3 and S2 are the outer and inner surface
areas of the metal thin ring.

2.3. Composite electro-mechanical equivalent circuit and resonance frequency analysis of the radial composite

piezoelectric ceramic transducer

At the boundary between the piezoelectric ceramic ring and the metal ring, the radial velocity and force are
continuous. Using the equivalent circuits as shown in Figs. 3 and 5 derived in the above sections for the

Fig. 6. Composite electro-mechanical equivalent circuit of a radial composite piezoelectric ceramic transducer in radial vibration.
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piezoelectric ceramic ring and the metal ring, the composite electro-mechanical equivalent circuit of the radial
composite piezoelectric ceramic transducer can be obtained as shown in Fig. 6. In the figure, the dotted line
divides the whole figure into two parts, one representing the piezoelectric ceramic ring, and the other
representing the metal ring in radial vibration.

In Fig. 6, there are two electric terminals and four mechanical terminals. When there are no external forces
acting on the inner and outer surface, i.e., Fr1 ¼ 0, and Fr3 ¼ 0, the mechanical terminals of the radial
transducer are short-circuited. In this case, from Fig. 6, the input mechanical impedance Zmr of the metal thin
circular ring in radial vibration, or the output mechanical impedance of the piezoelectric ceramic thin ring can
be obtained as

Zmr ¼ Z1m þ
Z2mZ3m

Z2m þ Z3m

. (23)

The mechanical impedance Zm between the mechanical terminals m and n of the radial composite
piezoelectric ceramic transducer in radial vibration is

Zm ¼ Z3p þ
Z1pðZ2p þ n2

2ZmrÞ

Z1p þ Z2p þ n2
2Zmr

. (24)

The input electric impedance Ze of the radial composite piezoelectric ceramic transducer is

Ze ¼
V3

I3
¼

Zm

N2
31 þ joC0rZm

. (25)

From Eq. (25), we can get the resonance frequency equation:

Ze ¼ 0. (26)

The anti-resonance frequency equation is

Ze ¼ 1. (27)

Using the resonance frequency Eq. (26) and the anti-resonance frequency Eq. (27), when the material
parameters and geometrical dimensions are given, the resonance frequency and the anti-resonance frequency
can be calculated. On the other hand, when the resonance frequency of the transducer is given, the geometrical
dimensions can also be obtained.

From the above analysis it can be seen that the frequency Eqs. (26) and (27) are complex transcendental
equations, their analytical solutions are impossible to find. Therefore, numerical methods should be used. Let
R2 ¼ R1 þ ðR3 � R1Þt, t is known as the radius ratio. The theoretical relationship between the resonance
frequency, the anti-resonance frequency, and the geometrical dimensions are computed by using the
mathematical software Mathematica. The materials of the piezoelectric ceramic ring and the metal ring are
PZT-4 and steel. Their standard material parameters are used and listed as follows: r0 ¼ 7500 kg/m3,
sE
11 ¼ 12:3� 10�12 m2=N, sE

12 ¼ �4:05� 10�12 m2=N, n12 ¼ 0.33, d31 ¼ �123� 10�12 C/N, �T
33=�0 ¼ 1300,

�0 ¼ 8:842� 10�12 C2=ðN m2Þ, r ¼ 7800 kg/m3, E ¼ 2.09� 1011N/m2, and n ¼ 0.28. The theoretical relation-
ship between the resonance frequency and radius ratio is shown in Figs. 7 and 8.

It can be seen from Figs. 7 and 8 that when radius ratio t is increased, the first and the second resonance and
anti-resonance frequency are all decreased. This means that the geometrical dimensions of the radial
composite piezoelectric transducer affect its resonance and anti-resonance frequency. When the inner and
outer radiuses R1 and R3 of the transducer are fixed, the resonance and anti-resonance frequency are decreased
when the radius R2 is increased. This means that the resonance frequency of a metal ring is higher than that of
a piezoelectric ceramic ring with the same geometrical dimensions. Fig. 9 illustrates the effective electro-
mechanical coupling coefficient keff of the radial composite piezoelectric transducer, its expression is

k2
eff ¼

f 2
p � f 2

s

f 2
p

. (28)
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Fig. 8. Theoretical relationship between the second resonance and anti-resonance frequency and radius ratio t.
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It is shown in Fig. 9 that the effective electro-mechanical coupling coefficient is increased when the radius
ratio t is increased. The reason for this is that when the proportion of the piezoelectric ceramic material in the
composite transducer is increased, the electro-mechanical conversion capacity is increased.

It is well-known that the finite element method is very useful in finding the resonance frequency and
analyzing the vibrational displacement distribution of transducers with any geometrical shapes and
dimensions. Table 1 illustrates the theoretical resonance frequencies of some radial composite piezoelectric
transducers by using the analytical method from the resonance frequency equation and the finite element
method. In Table 1, fr and fa are the first radial resonance and anti-resonance frequency of the transducers
obtained from the frequency equations; frn and fan are the first radial resonance and anti-resonance frequency
of the transducers obtained from the finite element method (ANSYS Program). D1 ¼ jf r � f rnj=f rn,
D2 ¼ jf a � f anj=f an. It can be seen from Table 1 that the resonance frequencies from the frequency equations
and the finite element method are in good agreement with each other.
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Table 1

Theoretical resonance and anti-resonance frequencies of the radial composite piezoelectric transducers from the frequency equations and

the finite element method

No. R1 (mm) R2 (mm) R3 (mm) h (mm) fr (Hz) fa (Hz) frn (Hz) fan (Hz) D1 (%) D2 (%)

1 7 26 46 6 27 781 29 638 27 740 29 768 0.15 0.44

2 6 30 50 8 25 798 27 970 25 741 28 078 0.22 0.38

3 8 20 40 6 31 761 33 066 31 726 33 097 0.11 0.09

4 4 12.5 42.5 6 36 368 37 409 36 337 37 379 0.09 0.08
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Fig. 9. Theoretical relationship between the effective electro-mechanical coupling coefficient and radius ratio t.

Fig. 10. The simulated vibrational displacement distribution pattern from the finite element method.
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Table 2

Theoretical and measured resonance and anti-resonance frequency of the radial composite piezoelectric transducers

No. R1 (mm) R2 (mm) R3 (mm) h (mm) fr (Hz) fa (Hz) frm (Hz) fam (Hz) D3 (%) D4 (%)

1 7 26 46 6 27 781 29 638 28 301 29 301 1.84 1.15

2 6 30 50 8 25 798 27 970 26 476 27 167 2.56 2.96

3 8 20 40 6 31 761 33 066 32 234 32 709 1.47 1.09

4 4 12.5 42.5 6 36 368 37 409 35 917 36 335 1.26 2.96
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The radial vibrational displacement distribution pattern of a radial composite piezoelectric transducer from
the finite element method is simulated and shown in Fig. 10. It is obvious that the simulated vibrational
distribution of the radial composite piezoelectric transducer is in the radial direction, and this is in full
consistency with the analytically predicted result.

3. Experiments

In order to verify the theoretical analysis, some radial composite piezoelectric ceramic transducers are
designed according to the frequency equations and manufactured. The materials of the piezoelectric ceramic
ring and the metal ring are PZT-4 and steel. Their material parameters are the same as those used in the
computation of the above analysis. The resonance and anti-resonance frequencies of the radial composite
piezoelectric transducers are measured using an Agilent 4294A precision impedance analyzer; the measured
results are listed in Table 2. In the table, fr and fa are the theoretical radial resonance frequency and anti-
resonance frequency of the radial composite transducer from the frequency equations; frm and fam are the
measured resonance and anti-resonance frequency of the radial composite transducer, D3 ¼ |fr�frm|/frm,
D4 ¼ |fa�fam|/fam. It can be seen that the measured radial resonance frequencies are also in good agreement
with the theoretical results from the frequency equations.

4. Conclusions

In this paper, the radial composite piezoelectric transducer is proposed and analyzed, its radial vibration is
studied analytically, and the finite element method is also used to analyze its electro-mechanical vibrational
characteristics. To sum up the above analysis, the following conclusions can be obtained:
1.
 The electro-mechanical equivalent circuit of the radial composite piezoelectric ceramic transducer is
obtained, and the resonance and anti-resonance frequency equations are derived.
2.
 The relationship between the resonance frequency and radius ratio of the radial composite piezoelectric
transducer is analyzed. When radius ratio t is increased, the resonance and anti-resonance frequency are
decreased.
3.
 When the radius ratio t is increased, the effective electro-mechanical coupling coefficient is increased.

4.
 The finite element method is used to find the resonance frequency and simulate the radial vibrational

displacement distribution of the radial composite piezoelectric transducer. It is shown that the resonance
frequencies from the frequency equations and the finite element method are in good agreement with each
other.
5.
 Some radial composite piezoelectric transducers are designed and manufactured; the resonance and anti-
resonance frequencies are measured. It is shown that the measured resonance frequencies are in good
agreement with the theoretical results.
6.
 In this paper, it is assumed that the thickness of the transducer is much less than its outer radius. This
means that the ideal plane radial vibration is assumed. The analysis for the radial composite piezoelectric
transducer consisting of a piezoelectric long tube will be studied in future research work.
7.
 This kind of radial composite piezoelectric ceramic transducers can be as ultrasonic and underwater sound
radiators with large radiation area and power. It can also be used as actuators and sensors in ultrasonic
motor and other related fields.
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